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ABSTRACT 
 
This report presents an analysis of a generalised logistics supply chain without back orders. 
Two methods are proposed: a responsive but robust delivery system based on maintaining set 
holdings levels; and a technique from Control Theory which pushes stock through the chain 
in anticipation of demand over both time and space. Furthermore, a heuristic is proposed to 
set the policy for holdings levels using a hybrid of statistical analysis, Simulated Annealing 
and Lagrangian Relaxation. Finally, a comparison between methods under uncertainty, with 
error in prediction and correlated demand, is conducted. Each method was found to be useful 
in different contexts. The impact of uncertainty and correlated consumption was quantified 
for a set scenario and both were found to be significant factors in the performance of the 
supply chain. 
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A Study of Logistics Chains for Optimal Supply and 

Maximum Throughput 
 

Executive Summary 
 
Conceptual incentives in logistics management and control, such as the United State’s 
Office of Force Transformation Sense and Respond Logistics and the Australian 
Defence Force’s Future Joint Logistics Concept, promote investment in rapid 
distribution supply networks based on adaptive processes across the Joint domain. It is 
proposed that streamlined “faster” and “leaner” methods of resupply, which trade off 
capacity and volume against rate of resupply, have the potential to reduce logistics 
footprints, improve distribution times and lower the risk of shortfalls in supply. 
 
This work primarily supports the defence capability Land 121 - Field Vehicle and 
Trailer Fleet Modernisation project with additional input to the JP 126 - Joint Theatre 
Distribution System, JP 2059 - Bulk Liquid Distribution and JP 2077 - Improved 
Logistics Information System projects. It examines the practicality of the new just–in–
time precision logistics concepts by contrasting a purely responsive demand-orientated 
model against a deliberately planned supply-orientated model. 
 
It is determined that no single method of logistical supply is a panacea for designing, 
managing and controlling logistics systems. The relevance and appropriateness of each 
are tied to the predictability of the logistics system and its behaviour. Identifying when 
each approach is useful is then more important than promoting any one approach 
above others. Furthermore, techniques for responsive systems, planned systems and 
adaptive systems are not necessarily mutually exclusive and can be applied in 
sequence or in concurrence for some systems. The benefits of one particular concept or 
philosophy over another becomes a moot point as each is useful in context. 
 
Correlations between consumption at different nodes in a supply chain were found to 
significantly reduce the performance of the system. This highlights the need to 
incorporate a level of buffering in warehousing policies to counter this effect. 
Uncertainty in predicting future consumption, and different probability density 
functions for consumption schedules were also found to significantly affect the 
performance of the system for the scenario under investigation. Together, these factors 
point to the need to maintain local capacity to achieve robust performance in the face of 
unexpected events. 
 
The results of this study do not directly contradict the ideas presented in the Australian 
Defence Force’s Future Joint Logistics Concept, but instead serve as a warning that 
responsive systems, simple or complex, will not and cannot entirely replace traditional 
planned systems, and that the problems associated with the design, implementation 
and analysis of adaptive precision systems are non-trivial. This study does support the 
conclusion that enhanced capabilities, emerging technologies and network-enabled 
warfare will ultimately facilitate better management and control of logistics systems. 
However, it does so on the basis that these new developments will reduce uncertainty 
across the system and therein have an indirect effect on the system rather than directly 
supporting better logistics supply. 
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1 Introduction

The nature of Land warfare is becoming increasingly complex, diverse, diffuse and lethal
(Commonwealth of Australia, 2004). However, complex terrain and the changing con-
temporary conflict environment offers new opportunities as well as new threats for the
Australian Defence Force to overcome. Facilitated by enhanced capabilities, emerging
technologies and network-enabled warfare, the Future Joint Logistics Concept (Common-
wealth of Australia, 2002) provides a conceptual foundation for the evolution of logistics
management and control to meet the challenge of future warfighting.

The Australian Defence Force’s Future Joint Logistics Concept promotes an agile logistics
network which is focused on rapid distribution of goods and services. This shift from
static inventory levels and stockpiling policies in favour of faster and leaner methods of
resupply will not necessarily eliminate or reduce the requirement for contingency stock-
piling policies but has the potential to tradeoff capacity and volume for increased rate of
resupply. It is proposed that adaptive and anticipatory logistics networks streamlined for
rapid distribution have the potential to reduce logistics footprints, improve distribution
times and lower the risk of shortfalls in supply.

In both the civilian and military sectors, the justification for investing in Information Tech-
nology improvements for logistics supply chains has traditionally been in terms of greater
efficiency. Potential improvements include “better information and prediction about con-
sumption rates, faster transport, cheaper transport, more efficient inter-modal transfer,
reduced stockpiling, quicker delivery or shuttle platforms, better information and predic-
tion about transfer rates, better visibility into critical items and better understanding
of item sequencing” (CAPT Lewandowski, L. and J.R. Cares, 2005). From this perspec-
tive, information technology plays an important role in process improvements by gathering
more information on consumption levels to enable better prediction of future consumption.
Clearly, the efficiency gains are dependent on the ability to predict future consumption
with sufficient accuracy and lead time to evaluate and implement the optimised supply
schedule.

Sense and Respond (SR) logistics is an aspirational goal for future military logistics systems
promoted by the US Office of Force Transformation (United States Department of Defense,
2004) and is also reflected in the Australian Future Joint Logistics Concept’s desire for
Network Enabled Logistics (Commonwealth of Australia, 2002). SR logistics “is envisioned
as an approach that yields adaptive, responsive demand and support for force capability
sustainment that operates in situation-conditioned structures that recognize operational
context, coherence, and coordination” (United States Department of Defense, 2005). Thus,
the role of information technology is shifted from purely facilitating global optimisation,
to enabling robust responses to local conditions throughout the logistics network.

This study examines the practicality of the new just–in–time precision logistics concepts
by developing and subsequently analysing two logistics systems, each modelled on the
opposing but not necessarily contradictory viewpoints introduced above.

In Section 2, a responsive, demand-orientated model is formulated. This model reacts
to its environment with fixed responsive dynamics without prediction of future demand
or adaptation and learning. This simple model captures the local responsiveness and
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robustness of the SR concept, although the role of prediction and adaptation are not
modelled. Using this model, we investigate the nature of stockholding policies in linear
supply chains under our interpretation of the SR policy for resupply. The ability to use
warehouses to adequately manage the risk of stockouts and shortfalls in supply throughout
the system is investigated - that is, we attempt to minimise the probability of ever running
out of stock and failing to meet demand. Under SR dynamics, the resupply policy is fixed.
We then develop a method to determine stockholding policies for warehouses throughout
the chain subject to known constraints using a hybrid technique combining aspects of
statistics, Simulated Annealing (Kirkpatrick et al., 1983; Cerny, 1985) and Lagrangian
Relaxation (Everett, 1963; Fisher, 1985). Hence, we investigate the premise that a logistics
network can be streamlined, maintaining low holdings and capacity, while still maintaining
adequate distribution and throughput.

In Section 3, a deliberately planned supply-orientated model is formulated. This model
is fundamentally different to the SR model of Section 2. It reacts to its environment
using predictive dynamics under the assumption of perfect foresight with compensation
for error and uncertainty. In this model, we fix the holdings policies throughout the
system and develop a method to determine an optimal routing or schedule for goods
using a technique from Control Theory called Dynamic Programming (DP) (Bellman,
1952). The DP model instantiates the optimisation concept for our linear supply chain.
The problem is highly abstracted, since the motivation is to understand the dynamics
of efficient supply chains rather than build an accurate model of contemporary military
logistics systems. Nevertheless the DP model provides us with a sufficient representation
of the defining characteristics of the optimised logistics supply chain concept to quantify
some aspects of the performance of these systems.

Finally, we relax the assumption of perfect foresight and introduce stochastic noise into
predictions of future consumption as well as correlating consumption to introduce occa-
sional catastrophic failures in the chains. This allows us to explore some of the problems
associated with the practical application of DP and to compare it against the fixed SR
policy introduced in Section 4.1.

A discussion of the results and further research is provided in Section 5. Conclusions are
drawn in Section 6.

2 Logistics Modelling

In this section we introduce the concept of a generalised logistics network. A logistics
chain is then defined as a special instance of this network. SR dynamics are introduced
to describe the manner in which goods are resupplied throughout the chain. With this
model, we present a technique to determine stockholding policies for warehouses through-
out the chain with the ultimate goal to minimise the risk of stockouts and shortfalls in
consumption. This work primarily provides an analytical conceptual framework for the
study of SR dynamics, including the idea that volume and capacity can be reduced while
adequate distribution and throughput are still maintained. An illustrative example of how
the framework might be applied in practice is also provided. However, no empirical data

2
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is presented from military supply chains in the real world so all examples are indicative of
potential applications rather than demonstratively and provably practical systems.

2.1 Logistics Supply Network

A logistics supply network is modelled as a set of network nodes N and a set of directed
arcs A joining these nodes. Nodes in the network are uniquely identified by an ordinal
labelling over the natural numbers N. For simplicity, we assume that two nodes in the
network are connected by at most one arc. Hence, directed arcs are uniquely identified by
the ordered node tuple (i, j), i, j ∈ N . These nodes and arcs represent entities in the real
world such as warehouses, consumers or manufacturers and roads, pipelines or telephone
lines, for example. A logistics supply network is then formally defined as the directed
graph G = (N , A ).

Every node i ∈ N at the instance in time t ∈ T is attributed with the following charac-
teristics:

• a current holdings level ht
i, which denotes the amount of stock held by the node i at

time t;

• a desired holdings level Ht
i , which denotes the policy for the preferred level of stock

to be held at node i at time t;

• a warehouse capacity level W t
i , which denotes the maximum possible amount of stock

that may be held at node i at time t;

• a current consumption level ct
i, which denotes the expenditure or usage of stock at

node i at time t; and

• a desired consumption level Ct
i , which denotes the demand or preferred level of

consumption for stock at node i at time t.

Every arc (i, j) ∈ A at the instance in time t ∈ T is attributed with the following
characteristics:

• a current throughput level δt
i,j , which denotes the amount of stock transferred from

the node i at the time t to the node j at time t + 1; and

• a maximum throughput ∆t
i,j , which denotes the maximum possible amount of stock

that may be transferred from the node i at time t to the node j at time t + 1.

The consumption at time t for all nodes i is given by

ct
i =

{

ht−1
i , Ct

i > ht−1
i ,

Ct
i , Ct

i ≤ ht−1
i .

(1)

Hence, nodes in the network have no choice but to meet the preferred level of consumption
Ct

i at time t using the stock holdings carried over from the previous time period t − 1.
That is, nodes may not willingly hold back stock when it is in demand.

The holdings level ht
i for every node i ∈ N at the instance in time t ∈ T is then the

stock carried over from the previous time period t − 1, less the consumption at t, less the

3
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difference between outgoing stock transfers and incoming stock transfers, given that the
maximum warehouse capacity W t

i cannot be exceeded. Formally,

ht
i = min{W t

i , h
t−1
i − ct

i −
∑

j 6=i

δt
i,j +

∑

j 6=i

δt
j,i}. (2)

Here, we expect the warehouse capacity W t
i to be constant in time at each node in most

cases. However, we allow the capacity to vary in time to allow, for example, policy
restrictions preventing the entire warehouse being utilised and expansions to the warehouse
capacity.

To prohibit nodes from transferring more stock than is held by those nodes during time
t − 1,

∑

j 6=i

δt
i,j ≤ ht−1

i − ct
i. (3)

Hence, nodes may only transfer stock carried over from the previous time step t − 1 in
excess of the consumption level ct

i.

In addition, we define the quantity Q as the base multiple or unit size for stock. Stock
may only be transferred between nodes in multiples of Q so that

δt
i,j = Qγt

i,j , (4)

for γt
i,j ∈ N.

We propose a penalty function which is based on two terms: a penalty term for not
maintaining the desired holdings level; and a penalty term for not supplying enough stock
for consumption. We define this, for the nodes i ∈ N /{0}, as

π(i, t) = A|Ht
i − ht

i|α + B|Ct
i − ct

i|β , (5)

where A, B, α and β are constants. Here, many different forms of penalty functions could
be used as the generality of the techniques we apply does not depend on the specific form
of the function. However, outcomes of particular applications of those techniques will
ultimately differ based on the forms chosen.

The node 0 is considered to be the source of all stock. This node does not consume stock,
has no warehouse limit and always has enough stock to transfer.

2.2 Logistics Supply Chain

A logistics chain is a particular instance of a logistics network, as given in Section 2.1.
We formally define the chain linear supply chain of length L + 1 as the directed graph
G = (N , A ) in which N = {0, . . . , L} and A ≡ {(i − 1, i)|i ∈ N /{0}}.
In general, there are many possible ways to schedule the flow of goods within the chain,
each potentially differing in value as determined by equation (5). Although the number
of distinct ways to schedule the flow of goods in our logistics chain is finite for each given
chain, enumeration over the space of all candidate schedules for a set of optimal solutions
is impractical for all but the simplest of chains. Furthermore, an optimal schedule for

4
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some particular instance of a chain tells us little about the optimal schedule for another.
It is more important to identify general techniques or algorithms to allow us to resupply
the chain across all possible chains. The aim then is to identify the best possible algorithm
across a range of chains or at least to identify one or more useful and practical algorithms
which assist us to understand the properties of the chain.

One of the simplest techniques for restocking nodes in the logistics supply chain is to
adopt a SR regime. Simply put, nodes in the chain consume goods following equation (1)
and subsequently place an order ot

i for stock with node i − 1 according to the recurrence
relation

ot
i = ot

i+1 + Q(min{Ht
i − (ht−1

i − ct
i), h

t−1
i−1 − ct

i−1, ∆
t
i−1,i} mod Q), (6)

for i ∈ N /{0, L} and

ot
L = Q(min{Ht

L − (ht−1
L − ct

L), ht−1
L−1 − ct

L−1, ∆
t
L−1,L} mod Q), (7)

otherwise.

Although equations (6) and (7) seem complicated, they are actually quite straightforward.
For each i ∈ N /{0}, these equations merely recursively compute the cumulative order
across the sub-chain j ≥ i in multiples of Q. The node 0, having unlimited stock, places
no orders. Then

δt
i−1,i = ot

i, (8)

describes the dynamics of the supply scheduling. Here we assume instantaneous through-
put.

2.3 Heuristics for Time–Invariant Holding Policies

Let Xi ≡ Xt
i , i ∈ N , t ∈ T , denote the random variables whose outcomes set the

consumption values Ct
i . We make the assumption of time-invariance for simplicity and

tractability.

For a fixed linear supply chain G, we wish to guarantee that the likelihood P(ht
i ≤ xi) of

ever having holdings less than or equal to the fixed amount xi is below some stipulated
acceptable risk probability ρ. This section presents a heuristic to set constant warehouse
policy levels Hi ≡ Ht

i in order to meet the criterion

P(ht
i ≤ xi) ≤ ρi, (9)

for constants xi and ρ. Alternatively, we may wish to guarantee that the likelihood
P(Ct

i − ct
i > yi) of a shortfall in desired consumption Ct

i of more than the fixed amount yi

is below some stipulated acceptable risk probability ρi. That is

P(Ct
i − ct

i > yi) ≤ %i. (10)

The assumption is made that we are able to sample instances or access data about the
underlying distributions of Xi but do not know the true distributions of Xi. For example,
it is a reasonably simple exercise to measure the average rainfall on a given day at some

5
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fixed location. However, it is a non-trivial exercise to develop a rainfall forecasting model
or even to fit sample data to a distribution with total certainty. The techniques we apply
are then practical, within reasonable limits, and do not make unnecessary demands on
knowing all aspects of the chain. In simulating the chain, we set the distributions for
Xi and sample those distributions a number of times to form unbiased estimators, which
approach Xi as n approaches infinity, in order to provide examples of our techniques.
These examples are not to be confused with the general technique we propose.

The ability to ever satisfy inequality (9) for x ≡ 0, ρi ≡ 0 depends on the distribution
of Xi. For example, if Xi is uniformly distributed over the integers in [0, 10] then it is
certainly possible to guarantee that node 1 never runs out of stock simply by setting the
holdings policies across the chain to sufficiently large integers. However, if Xi is normally
distributed then it is not possible to guarantee that the nodes will never run out of stock
for any finite holdings policy Hi because the upper tail end of the normal distribution is
not bounded. The probability of running out of stock quickly diminishes as Hi increases
so that setting Hi to an arbitrarily large number is an easy way to satisfy our requirements
for all practical purposes. However, in reality Hi is limited by physical constraints such
as warehouse sizes, monetary considerations or other issues which prevent us from having
arbitrarily large warehouse holdings policies. In this situation, it makes sense to minimise
the total holding policies across the chain subject to the constraints (9) or (10).

minimise
∑

Hi,
such that P(ht

i ≤ xi) ≤ ρi or P(Ct
i − ct

i > yi) ≤ %i.
(11)

Alternatively, define a maximum Hmax for the holdings policies across the chain and
minimise the total system failure probabilities across the chain.

minimise
∑

P(ht
i ≤ xi) or

∑

P(Ct
i − ct

i > yi),
such that

∑

Hi ≤ Hmax.
(12)

Both systems (11) and (12) are difficult to solve as they stand. We use Lagrangian
Relaxation (Everett, 1963; Fisher, 1985) to translate our original problem into a simpler
form.

Considering now only cases for equation (9), the program (11) becomes

maximise L (φ) = min{∑ Hi +
∑

(φi(P(ht
i ≤ xi) − ρi))},

such that φi ≥ 0,
(13)

and the program (12) becomes

maximise L (ψ) = min{∑ P(ht
i ≤ xi) + ψ(

∑

Hi − Hmax)},
such that ψ ≥ 0,

(14)

where L is the objective function, φ = (φi), i ∈ N is the vector of Lagrangian multi-
pliers and ψ is a scalar Lagrangian multiplier. The cases for equation (10) follow mutatis
mutandis.

To explain how Lagrangian Relaxation works in our case, consider the objective function
L (ψ) in the program (14). For ψ → 0, the value of the objective function is dominated

6
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by the first term
∑

P(ht
i ≤ xi) so that the minimisation will set the holdings Hi as large

as possible and the probability of holding less than xi becomes arbitrarily small, assuming
also that ψ

∑

Hi → 0 as ψ → 0, which is reasonable when
∑

Hi is bounded. The value of
the objective function approaches 0 from above. On the other hand, as ψ → ∞ the value
of the objective function is dominated by the second term ψ(

∑

Hi −Hmax) since the first
term can add to at most L when P(ht

i ≤ xi) = 1 for every i = 1 . . . L. As the holding
policies for all nodes is generally expected to be at least 1 parcel of size Q then Hmax

should be set by the user to at least QL and is usually significantly greater. However, we
allow Hi = 0 even though this makes little sense in practice. The value of the objective
function approaches (L − ψHmax) → −∞ as ψ → ∞. It is not difficult to see that, in
the minimisation, there exists some finite ψ > 0 which causes

∑

Hi to equal values other
than arbitrarily large numbers or 0. For example, if such a ψ were to cause

∑

Hi to equal
Hmax then the second term in the objective function is eliminated but the first term in the
objective function is likely to exceed 0 depending on whether Xi is bounded to some finite
amount, in which case there might be no gain in raising

∑

Hi beyond some fixed amount
which suffices to ensure

∑

P(ht
i ≤ xi) = 0. Otherwise, the value of the objective function

is strictly positive. It is a ψ of this kind which solves our problem. This appeals to reason
because observing the initial problem (12) we can intuitively see that solutions where

∑

Hi

is close to Hmax are likely to be optimal. The Lagrangian Relaxation (13) works in a more
complicated but analogous way to (14). To solve our Lagrangian Relaxation problems,
we propose to use Simulated Annealing (SA) (Kirkpatrick et al., 1983; Cerny, 1985) as
explained in Appendix B.

The implementation of the SA algorithm for our problem starts by identifying the state
space, which, given that we make no undue assumptions about the distributions of Xi,
i ∈ N , is not trivial. We have already indicated that, for values of ρi in the limit
approaching zero, the Hi may become arbitrarily large. Hence, we require an approach
which bounds Hi based on some measurement of statistical likelihood. The technique we
employ samples the distributions of Xi, T = 1000 independent times. These samples are
used to construct an approximation to the distribution of the random variable Yi, whose
outcome describes the average of the sum of the Xj over j ≥ i. The reasoning here is
that on average the node i needs to hold enough to meet its own consumption and also
to fill any stock order made by the node i + 1. Node i + 1 orders stock based on its own
consumption and the order made by the node i + 2. With recursion, we propose that on
average the node i is required to hold enough to fill its own consumption requirements
and also enough that the consumption requirements of all nodes j > i are met. This
embraces the concept of throughput over capacity. It is not necessarily true that node
i needs to meet the total desired consumption of the sub-chain j ≥ i. It could be that
nodes stockpile against the likelihood of not being supplied. In our systems, we wish to
reduce the stockpiling levels and concentrate on the benefits of increasing throughput with
appropriate holding policies. Hence, our approach is reasonable within this context.

A histogram for the sample outcomes of Yi, i ∈ N is obtained using Monte Carlo sampling.
This histogram is used to set upper bound for Hi based on the tail probability ς intended
to capture the upper ς percentile of Yi. Figures 1, 2 and 3 display the average outcomes
of Yi over 100 independent simulations each lasting 1000 time steps for nodes 1, 2 and 3
respectively in a 4 node chain. The error bars denote 95% confidence intervals using a
t-statistic. In these figures, the upper tail end of the histograms are shaded in red to show
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Figure 1: Histogram of sample outcomes of Y at node 1 over 100 independent simulations
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Figure 2: Histogram of sample outcomes of Y at node 2 over 100 independent simulations
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Figure 3: Histogram of sample outcomes of Y at node 3 over 100 independent simulations
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the upper ς = 0.05% of the histrograms. The bound of zero is used as the lowest value for
Hi in this model. However, the lower ς percentile of Yi is also shaded red because setting
a lower bound for Hi is useful in many practical situations.

The initial state of the system is set to

Ht
i ≡ Hi =









1

T

T
∑

t=1

∑

j≥i

Ct
i







 , (15)

for i ∈ N /{0}. The Hi values set in this step then denote the sum of the sample means
for consumption of the node i itself and all nodes that node i supplies and is an unbiased
approximation of the expected value E[Yi].

To implement the SA algorithm, we need to be able to perturbate the system - that is:
for each temperature level T ∈ T define the disturbance functions ξT : S → S which takes
as input the current state of the system and generates a new state. Let Hhigh

i and H low
i

denote the maximum and minimum values for node i ∈ N /{0} as determined by the
upper and lower ς percentiles of Yi. Again, we use H low

i ≡ 0 for reasons that will become
apparent shortly. Then, the disturbance function ξ is implemented to select a node at
random, excluding the source node 0, and add or subtract a uniformly distributed random
number. This number is generated between 1 and λ(Hhigh

i − H low
i ) with equal likelihood

from its holding policy to generate a new state, where λ = 0.1 is a proportionality constant.
The outcome of the algorithm does depend somewhat on λ. The value of 0.1 is chosen
because it was observed to be effective – that is; the algorithm converged to a “better”
solution more quickly than other values we tested. We use the cooling schedule

Tj = Tj−1/2, (16)

for j = 1, . . . , 7 with initial temperature T0 = 1.

To demonstrate our method, we compare two supply chains of length four. In the first
instance, SA is used to provide an approximate solution to a Lagrangian Relaxation prob-
lem of the type (14) with Hmax = 25, where the second term in the objective function
from (12) is used - that is,

∑

P(Ct
i − ct

i > yi), for yi = 0 ∀i. In the second instance, Brute
Force (BF) enumeration over all feasible solutions is used to solve the same Lagrangian
Relaxation problem optimally. Desired consumption is normally distributed with a mean
of 5 and a standard deviation of 3 so that the underlying simulations of the logistics
chains are stochastic and optimality is itself subject to random stochastic noise. A single
simulation of each chain lasts 1000 steps in time. The inner Metropolis loop of the SA
algorithm perturbates the system K = 100 times at each temperature level. Each of the
two approaches are repeated a total of 100 independent times. Results are provided in
Table 1. In this table, the column labelled BF describes the best value of the objective
function L (φ) found by completely enumerating over the state space, the column labelled
SA∗ describes the best value of the objective function found over all 100 independent trials
and the S̄A describes the mean value.

The best solution found for Hi across the chain occurs at ψ = 0.06 with value of L (φ) =
0.0783. For values of ψ between 0.55 and 0.65 in steps of 0.001 a better solution at
ψ = 0.059 with value L (φ) = 0.814 is located. Random variation in the results impedes

9
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Table 1: Results of simulations for BF enumeration and SA in a four node chain for values
of ψ between 0.03 and 0.10

ψ BF (Hi)
∑

Hi SA∗ (Hi)
∑

Hi S̄A SDev

0.03 0.527 (17, 13, 10) 40 0.533 (17, 13, 9) 39 0.615 0.065
0.04 0.665 (17, 12, 8) 37 0.628 (16, 12, 9) 37 0.753 0.093
0.05 0.752 (15, 12, 7) 34 0.753 (15, 11, 7) 33 0.897 0.120
0.06 0.783 (10, 7, 0) 17 0.755 (11, 8, 0) 19 0.890 0.099
0.07 0.718 (10, 7, 0) 17 0.696 (11, 7, 0) 17 0.782 0.068
0.08 0.610 (7, 0, 0) 7 0.595 (7, 0, 0) 7 0.673 0.070
0.09 0.423 (6, 0, 0) 6 0.415 (6, 0, 0) 6 0.529 0.071
0.10 0.266 (5, 0, 0) 5 0.241 (7, 0, 0) 7 0.379 0.090

Total H

(17,13,10)
(17,12,8)

(10,7,0) (10,7,0)

(7,0,0) (6,0,0) (5,0,0)

(15,12,7)

0.1

0.3

0.5

0.7

0.9

1.1

3 4 5 6 7 8 9 10

Psi * 100

U
ti

li
ty



0

5

10

15

20

25

30

35

40

45

Avg SA

BF

Min SA

Total H
(BF)

Figure 4: Graph of the total of the holdings policies in the chain and the utility L (φ) for
BF enumeration and SA plotted against ψ

our ability to accurately calculate the objective function beyond this sensitivity. A phase
type behaviour is observed between ψ = 0.057 and ψ = 0.058 where the optimal holdings
policies change from (14, 10, 4) to (10, 6, 0). Overall, the dynamics appear to contain two
phase transitions in the BF

∑

Hi plot of Figure 4. A shift in policies between those in
which H3 > 0 and H3 = 0 is important because if at any time H3 > 0 then there must be
sufficient capacity and throughput in all other nodes for the investment to be worthwhile.
When H3 = 0, an increased penalty is invoked in not meeting desired consumption at node
3 but the holdings policies of all other nodes are reduced to offset the loss. To demonstrate
this principle, we ran a BF enumeration with the additional constraint H3 > 0. The
optimal policy for the system shifted from (10, 6, 0) to (9, 6, 3). In this situation one might
have assumed that H3 would be set to the lowest feasible value, namely unity. Instead, it
was set to a value of 3 due to the higher-order non-linear dynamics of the chain. Obviously,
by enforcing the constraint H3 > 0 we are forcing the system to stay in one phase. This
is important because it clearly demonstrates that discontinuities in the chain exist; that
is, points at which two distinct solutions exist with equal value. Care must then be taken

10
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in the neighborhood of transition points.

Figure 4 graphs the results of Table 1, where the rightmost ordinate axis (labelled ‘Utility‘)
measures the value of the objective function L (φ) and the leftmost ordinate axis (labelled
‘Total H‘) measures the

∑

Hi. In this figure, the curve depicting the minimum value of
L (φ), obtained for each fixed ψ in the SA algorithm, actually lies below that obtained
using brute force enumeration. This is clearly an aberration in our method caused by
random variation across the consumption generated in each independent simulation. The
reason is one or more of the 100 independent SA results are simply better than the result
of the single simulation using brute force enumeration. The concept is somewhat similar
to rolling a die once and then trying to beat that role by rolling 100 dice. In any case, it
is clear that the best result of the SA algorithm is as close as one can reasonably get to
optimal, given the random variation across the chain. The effect of this random variation
can be reduced in practice by running each simulation for longer. In our example, 1000
time steps is considered sufficient.

2.4 Cascades in Logistics Supply Chains

We are interested in the stability of the logistic supply chain to perturbations. We seek
to determine if small changes cascade through the system or whether the logistics supply
chain is robust to perturbation. Under the SR policy, we investigate the stability of the
network to a perturbation of size ε = mQ in consumption at the end node L, where
m ∈ N. That is, ε is a non-negative multiple of the unit size for stock Q. If the desired
consumption Ct

L results in current consumption ct
L and in a resupply order ot

L, then the
desired consumption C̃t

L ≡ Ct
L + ε produces a current consumption

c̃t
L =

{

ht−1
L , C̃t

L > ht−1
L

C̃t
L, C̃t

L ≤ ht−1
L

(17)

and c̃t
i = ct

i, for i ∈ N/{L}.
The resupply order to node L − 1 is

õt
L = Q(min{Ht

L − (ht−1
L − c̃t

L), ht−1
L−1 − c̃t

L−1, ∆
t
L−1,L} mod Q),

≤ Q(min{Ht
L − (ht−1

L − (Ct
L + ε)), ht−1

L−1 − Ct
L−1, ∆

t
L−1,L} mod Q),

≤ ot
L + ε.

(18)

For the recurrence relation,

õt
i = õt

i+1 + Q(min{Ht
i − (ht−1

i − ct
i), h

t−1
i−1 − ct

i−1, ∆
t
i−1,i} mod Q),

≤ ot
i+1 + ε + Q(min{Ht

i − (ht−1
i − ct

i), h
t−1
i−1 − ct

i−1, ∆
t
i−1,i} mod Q),

≤ ot
i + ε,

(19)

for i ∈ N /{0, L}. Therefore, orders do not grow along the logistics supply chain when
the system is perturbed. We now consider the state of the system at time t + 1 after a
perturbation at node L at time t. The holdings at node L is

h̃t+1
L = min{W t+1

L , h̃t
L − ct+1

L + δt+1
L−1,L}, (20)

11
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where

h̃t
L = min{W t

L, ht−1
L − c̃t

L + δ̃t
L−1,L}. (21)

Note that
δ̃t
L−1,L − δt

L−1,L ≤ c̃t
L − ct

L ⇒ h̃t
L ≤ ht

L. (22)

Suppose W t+1
L is the minimal term in equation (20). Then

W t+1
L ≤ h̃t

L − ct+1
L + δt+1

L−1,L

≤ ht
L − ct+1

L + δt+1
L−1,L.

(23)

Therefore,
h̃t+1

L = ht+1
L = W t+1

L . (24)

That is, the current holdings level equals the warehouse capacity regardless of whether the
system is perturbed, meaning the perturbation dies out at node L after one time step.

Suppose instead that W t+1
L > h̃t

L − ct+1
L + δt+1

L−1,L. Then

õt+1
L = Q(min{Ht+1

L − (h̃t
L − ct+1

L ), h̃t
L−1 − ct+1

L−1, ∆
t+1
L−1,L} mod Q),

≤ Q(min{Ht+1
L − (ht

L − ε − ct+1
L ), ht

L−1 − ct+1
L−1, ∆

t+1
L−1,L} mod Q),

≤ ot+1
L + ε.

(25)

This shows that the SR ordering policy is stable, since any perturbation at node L cannot
grow either along the chain, or over time. The above proof can be easily extended for nodes
other than L. Interestingly, linear supply chains are not always stable. Bender (2004)
has shown that if orders are placed to satisfy a stockpiling policy Ht

i ≡ ai + Ct
i , where

ai is constant, the logistics supply chain is unstable and any perturbation is amplified
exponentially. Hence, it is possible that the logistics supply chain will exhibit chaotic
dynamics under different ordering policies other than SR.

We also investigate the interdependencies between failures at different nodes in the supply
chain. For the brute force enumeration in Appendix A, the expected probability of failure
Ei[P(Ct

i − ct
i ≤ −1)] averaged over all 1296 holding policy combinations for each node i

is 0.0000, 0.0006, 0.0294, and 0.2669 respectively. On average, most of the failures (90%)
occur at the fourth node in the supply chain. However, while this symptom is exhibited
at node four, it is not clear that the holding policy at node four is responsible for all
of the failures. One way to investigate interdependencies between nodes is to remove
the first node from the supply chain and simulate the remaining nodes with the same
consumption schedules, with node 2 now connected directly to the source node 0. Because
this removes the effect of the first node’s consumption and holding policy, the reduction
in Ej [P(Ct

j − ct
j ≤ −1)], j ∈ {2, 3, 4} can be considered to be the component of failures

at node j that are caused by the holding policy and consumption at node 1. This process
can be applied recursively to identify the impact of each node on downstream failures.

Figure 5 depicts Ei[P(Ct
i −ct

i ≤ −1)] for each node. Each column in the graph is segmented
into regions that represent the causal influence of upstream nodes. At node 4, even when
all other nodes are removed from the logistics supply chain, Ct

4 − ct
4 ≤ −1 occurs 0.166 of

12
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the time. In comparison, the activities of node 3 add 0.055 to E4[P(Ct
4 − ct

4 ≤ −1)], while
the contributions of nodes 2 and 1 are 0.030 and 0.016 respectively. For node 3, in the
absence of nodes 1 and 2, Ct

3−ct
3 ≤ −1 occurs less than 0.006 of the time, with consumption

and holdings in nodes 2 and 1 contributing to 0.012 and 0.010 of failures respectively. In
summary, the holding policy at node 4 is responsible for 62% of the failures at node 4,
whereas 77% of node 3’s failures are due to interdependencies with upstream nodes.

This process is also performed in reverse to identify how consumption by nodes downstream
can cause failures to meet consumption upstream in later time steps. When node 4 is
removed, E3[P(Ct

3 − ct
3 ≤ −1)] is reduced from 0.029 to 0.008, so the consumption at node

4 causes 0.021 of failures at node 3. Ei[P(Ct
i − ct

i ≤ −1)] is less than 0.001 for nodes 1 and
2, so these values are too small to reliably estimate the causal influence of downstream
nodes. Of course, the nodes can be removed in any other permutation, which will show
different causal relations. However, the motivation for recursively removing from one end
of the supply chain is to determine the causal relation compared to the distance between
two nodes, which is successively reduced by one when the nodes are removed in order.

The above analysis shows the impact of upstream consumption can be greatly magni-
fied downstream. However, the five node supply chain is not long enough to determine
whether the impact continues to grow or eventually dies out. Figure 6 shows simula-
tion results from a 20 node logistics supply chain. The results are averaged over the
set of holding policies within one unit distance of the solution found by SA, H∗ =
(84, 87, 79, 94, 76, 84, 84, 62, 57, 48, 49, 46, 30, 36, 31, 24, 12, 18, 7). Only nodes 11 through
19 are graphed, since P(Ct

i − ct
i ≤ y) is less than 0.0001 for nodes 1 through 10, and node

0 is the source node. This graph shows that the proportion of failures due to node 1
across nodes 10 through 17 is significantly greater than any other node and that if this
node were to be removed from the simulation then the majority of the failures at nodes 10
through 17 would be eliminated. However, nodes 18 and 19 show that the effect of node 1
reduces, both in absolute terms and as a percentage of total failures. Node 13 also causes
magnified downstream failures, which peak at node 18 and are smaller at node 19. The
impact of upstream consumption has not continued to grow unabated along the chain.
We hypothesize this is due to the stochastic nature of consumption in the supply chain.
Although an above average consumption at some time step upstream will have an adverse
effect downstream, the further downstream a node is, the greater the probability is that
intermediate nodes will have below average consumption. The further downstream a node
is, the more fluctuations at the start of the chain are lost in the noise of the fluctuations
at intermediate nodes. This would act to balance the apparent short range magnifications
to produce a peak that eventually dies out.

The other interesting feature of Figure 6 is that only nodes 1, 13, 17 and 19 cause significant
percentages of the failures in this supply chain. All of these nodes share the property that
Ht

i < Ht
i+1, despite the fact that they must supply at least as much as node i + 1 every

turn. This suggests that these nodes are weak points in the chain that may provide the
greatest marginal return for increases in Ht

i , although we also note that other nodes share
this property yet do not appear to be weak points. Therefore, this condition may be
necessary but not sufficient for identifying potential weak points. Because the SA policy
after a finite number of iterations is not guaranteed to be optimal, the causal analysis
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method we have developed could potentially offer a constructive technique for improving
on the SA policy.

3 Control Theory

In the previous section, the manner in which goods are routed or scheduled throughout
the system is fixed, according to equations (6) and (7). Under this fixed scheduling,
the holdings policies Ht

i are varied, subject to known constraints, with the objective to
minimise stockouts and shortfalls in supply. In this section, we propose to fix the holdings
policies Ht

i and determine the optimal schedule for goods using Control Theory under the
assumption of perfect foresight in consumption. The performance of both techniques for
scheduling goods are then tested under a relaxation of the perfect foresight assumption
by incorporating stochastic noise into predictions for consumption throughout the system
in both time and space. Additional comparisons with correlated consumption are also
conducted to stress the system.

3.1 Multistage Decision Process

Consider a discrete process on the state space S with a finite number of stages N =
{1, . . . , N}; that is, a multistage process with finite horizon. At each stage in the process
n ∈ N , a control decision dn ∈ D is applied. The process obeys the transition function
τn : S × D → S such that

sn+1 = τn(sn, dn), sn ∈ S, dn ∈ D, n ∈ N . (26)

This describes a deterministic Markov decision process because the transitions between
states are not stochastic and the state at each stage of the process depends only on the
state of the system and a control decision at the previous stage. A logistics network in
general could also be modelled to depend on an extended history of the process, beyond
the previous stage. Such requirements can be built into the decision process under the
transition function (26), for dependence on an extended history of finite length, with
a suitable interpretation of the state space of the system which takes into account the
physical condition of the system across multiple instances in time.

Of course, the set of feasible control decisions Fn,s at any given stage n ∈ N also depends
on the state of the process s ∈ S so that Fn,s ⊆ D. Hence, we further require not only
that dn ∈ D but also that dn ∈ Fn,s, s ∈ S for every n ∈ N . Also note that we can define
D ≡ ∪n∈N ,s∈SFn,s so that the set of control decisions D contains only feasible states.

At each stage n ∈ N the process is associated with a return function υn : S × D → R.
The value

ν =
∑

n∈N

υn(sn, dn), (27)

denotes the total return of the process over all stages.

Refer to Figure 7 for an illustrative description of the interactions in a single stage of the
multistage decision process.
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Stage

n ∈ N

State

sn ∈ S

Control dn ∈ Fn,sn

State

sn+1 = τn(sn, dn)

Value υn(sn, dn) ∈ R

Figure 7: Multistage decision process

A deterministic multistage decision process (Sniedovich, 1992, pp.31–33) is then defined
as the 6-tuple D = (N ,S,F , τ, υ, s) where s denotes the initial state of the process with
the objective to

maximise ν =
∑

n∈N υn(sn, dn),
subject to dn ∈ Fn,sn , n ∈ N ,

sn+1 = τn(sn, dn), n ∈ N ,
s1 = s.

(28)

That is, given a multistage decision process D, on a finite horizon of N stages with initial
state s, determine the sequence of controls di, i = 1 . . . N , that maximises the value of the
process v. We define this sequence of controls as an optimal policy of D.

3.2 Dynamic Programming

Bellman’s Principal of Optimality (Bather, 2000, p.18) states that

An optimal policy has the property that, whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

This result means that, if the initial control decision of a multistage decision process is
contained within an optimal policy for that process, then the remaining control decisions
form an optimal policy for the remainder of the multistage decision process with the input
state resulting from that initial control decision. Bellman (1952, 1957) used this principle
to define a method of solving the multistage decision process using recursion. That is,
starting at the final stage and last state of the process, work backwards to identify an
optimal policy for the process. Hence, Bellman solved the multistage decision process
as a number of sub-processes in which each process extended the optimal policy of the
previous process until the optimal policy of the original multistage decision process had
been calculated. This procedure is called Dynamic Programming, denoted earlier DP.
Refer to Boudarel et al. (1971, pp.11–12) for a direct derivation of mathematics of the
method.
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To apply Bellman’s method, recursively define the optimal value υ̂n(sn) and optimal con-
trol d̂n, over the stages n through N , for the multistage decision process D, as

υ̂n(sn) = max
dn∈Fn,sn

(υn(sn, dn) + υ̂n+1(τn(sn, dn)), n ∈ N , (29)

and
d̂n = arg max

dn∈Fn,sn

(υn(sn, dn) + υ̂n+1(τn(sn, dn)), n ∈ N , (30)

respectively, where υ̂N+1(sn) ≡ 0.

Then, to compute an optimal policy of D, we need only to recursively compute d̂n, sn and
υ̂n.

For example, suppose that a supply node is provided with a schedule of consumption xn

over the next four months n = 1 . . . 4. The node initially has no stock in hand but does have
an arbitrarily large warehouse capacity. However, the node is penalised for carrying over
stock from previous months. A monthly penalty is invoked for holding excess unused stock.
Furthermore, the supply node is unable to regulate changes in deliveries easily. Agencies
delivering stock to the supply node charge a penalty for varying the delivery schedule
between months. Then our Dynamic Program D becomes a minimisation problem and we
associate the return function with the penalty function.

Let the consumption in the first, second, third and fourth months be x1 = 3, x2 = 0,
x3 = 1 and x4 = 1 units of goods respectively. Let the state of the process during stage n
be defined by the tuple (hn, on−1), where hn denotes the stock holdings carried over in the
warehouse from the stage n − 1 and on−1 denotes the delivery received by the warehouse
during stage n − 1. No stocks are carried over from n = 0 and no deliveries are received
in n = 0. Then, let

υn = 100hn + 300|on − on−1|, (31)

so that

υ̂n(hn, on−1) = min
y≥xn−hn

(100hn + 300|y − on−1| + υ̂n+1(hn + y − xn, y)). (32)

Table 2: Calculations for example Dynamic Program

Stage 4 (4th month) Stage 3 (3rd month) Stage 2 (2nd month) Stage 1 (1st month)

h4 o3 υ̂4 d̂4 h3 o2 υ̂3 d̂3 h2 o1 υ̂2 d̂2 h1 o0 υ̂1 d̂1

0 0 300 1 0 0 300 1 0 3 1100 1 0 0 2000 3

0 1 0 1 1 0 400 0 1 4 1600 1
1 0 100 0 1 1 500 1 2 5 2000 0
1 1 400 0 2 0 300 0
1 2 700 0 2 1 600 0

2 2 900 0

The optimal policy of our example is displayed in Table 2 in bold italic numerals. This
policy is interpreted as:

• ordering 3 units goods in the first month, supplying 3 units goods and emptying the
warehouse;

17



DSTO–TR–1807

• ordering 1 unit goods in the second month and holding this unit in the warehouse;

• ordering 1 unit goods in the third month, supplying 1 unit goods and holding 1 unit
in the warehouse; and

• supplying 1 unit goods and emptying the warehouse in the fourth and final month.

3.3 Logistics Supply Chain

The multistage decision process, for this general logistics supply network of Section 2.1, is
posed as follows. Given Ht

i , W t
i , Ct

i , Q, and ∆t
i,j determine the δt

i,j , γt
i,j , ht

i, and ct
i to

min
∑

i∈N /{0},t∈T

π(i, t) = A|Ht
i − ht

i|α + B|Ct
i − ct

i|β ,

subject to ht
i = min{W t

i , ht−1
i − ct

i −
∑

j 6=i δ
t
i,j +

∑

j 6=i δ
t
j,i}, i ∈ N /{0}, t ∈ T ,

ct
i =

{

ht−1
i , Ct

i > ht−1
i ,

Ct
i , Ct

i ≤ ht−1
i ,

i ∈ N /{0}, t ∈ T ,

∑

j 6=i δ
t
i,j ≤ ht−1

i − ct
i, i ∈ N /{0}, t ∈ T ,

0 ≤ δt
i,j ≤ ∆t

i,j , i, j ∈ N , t ∈ T ,

δt
i,j = Qγt

i,j , i, j ∈ N , t ∈ T ,

h0
i = bH0

i c, i ∈ N ,

γt
i,j ∈ N, i, j ∈ N , t ∈ T .

(33)

DP is well-suited to calculating an optimal policy for the controls in a multistage decision
process for a linear supply chain - that is, solving (33) for the network topology of a
linear supply chain. By the very definition of optimality, DP finds policies that are both
temporally and spatially efficient. The DP model anticipates future consumption for goods
and holds those goods dispersed along the chain, appropriately displaced in time, to best
meet the consumption and hence maximise the difference in the penalties accrued for
holding excess stock and the penalties accrued for failing to meet consumption.

To better examine the impact of the penalty function on the optimal policy for the DP
model, consider a four node network with warehouse capacity of ten and holdings policy
of four, over four stages, with a desired consumption of ten unit goods in the final two
stages of the process at node three. For this experiment, the value of the optimal policy is
not important and only one optimal policy is provided, although the nature of all optimal
policies is discussed.

Let ht = (ht
i), i = 1, . . . , 3 and let h = (ht), t = 1, . . . , 4. Equation (5) with A = B = 1

and α = β = 2 results in three solutions, one of which is

h = ((5, 4, 4), (4, 6, 7), (4, 4, 6), (4, 4, 4)). (34)

This solution is displayed in Figures 8 through 11. In these figures, the arcs denote goods,
either transferred between nodes, consumption or holdings carried from the previous stage.
These figures are not to be confused with Figure 7 in which arcs between nodes denote
stages, the input arc denotes a control decision, and the output arc denotes a return value.
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This optimal policy presents a demonstration of the temporal and spatial properties of
the system. Notice that equation (34) results in a stockpile of 7 units at node 4 in stage 2
to meet the consumption of 10 (with a shortfall of 3 units) in the subsequent time period.
This choice of stockpiling 7 units rather than 10 is a direct result of the penalty function.
It costs (7− 4)2 = 9 units to hold the 7 units (an excess of 3 units on the desired holdings
level) over a stage and it costs (10 − 7)2 = 9 units in failing to meet the target quota for
consumption of 10 units (a shortfall of 3 units on the desired level). Notice that these
two cost terms are actually invoked in different stages. The total of these two terms is 18
units with an additional once off cost of 1 unit due to the holdings at the 1st stage. It is
easy to see that this is the optimum behaviour because it costs (8 − 4)2 + (10 − 8)2 = 20
units to stockpile 8 units instead of 7 and (6 − 4)2 + (10 − 6)2 = 20 units to stockpile 6
units instead of 7. Both of these options, and indeed all other options, are worse than the
optimum. Next, equation (34) indicates that 6 units of goods are stockpiled at node 3 (for
node 4) in stage 2 (for consumption in stage 4). This costs 22 + 22 = 8 units in holdings
over two stages and 42 = 16 units in failing to meet target consumption levels. The total
cost is then 24 units. Again, stockpiling any amount of goods other than 6 units results
in a higher total cost (eg stockpiling 7 goods results in a total cost of 32 + 32 + 32 = 27
and stockpiling 5 goods results in a total cost of 12 + 12 + 52 = 27).

In a military context, small stockpiles of goods are desirable because they have the effect
of reducing the logistics footprint compared with the larger footprint under increased
stockpiling. Infrastructure such as warehouses is also costly to establish and maintain.
Furthermore, keeping large inventory levels with idle stock is wasteful of resources. Hence,
A, B, α and β in equation (5) are important parameters in determining the penalty invoked
for stockpiling. We provide three examples to illustrate the types of policies obtained under
different parameterisations of the model.

Suppose that, A = B = 1 and α = β = 1 in equation (5). Then there are five solutions,
one of which is

h = ((4, 4, 4), (4, 4, 4), (4, 4, 4), (4, 4, 4)). (35)

This optimal policy simply meets the warehouse holding policy levels of 4 units at each
stage. The shortfall in consumption is not ignored, there is merely no advantage to be
gained in stockpiling goods because the penalty invoked in holding excess goods exactly
equals the penalty invoked in failing to meet desired consumption. Likewise, there is no
advantage to be gained in not stockpiling goods. Hence, the other four solutions have
a holdings level of 1, 2, 3, and 4 units respectively at node 4 in the 2nd stage (to be
consumed in the 3rd stage). It is not efficient to stockpile goods over 2 stages, as it was in
the previous example, because any penalty x is invoked twice for holdings above 4 units
but the shortfall in consumption 10 − 4 − x is invoked only once so that the net penalty
actually increases by x units. Hence, none of the five optimal policies attempts to stockpile
any additional goods for the consumption at node 4 in stage 4.

When A = B = 1, α = 2 and β = 1 the solution (35) is again optimal. However, in this
example there is only one additional optimal policy

h = ((4, 4, 4), (4, 4, 5), (4, 4, 4), (4, 4, 4)). (36)

Here it is costly to stockpile goods, hence the best policy is to simply meet target warehouse
levels. The solution (36) is optimal because 12 = 1 so the squared term for holding excess
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stock is exactly equal to the linear term for shortfall in consumption only when the amount
of goods is unity.

If A = B = 1, α = 1 and β = 2 we have twenty-eight solutions, including

h = ((8, 5, 4), (4, 8, 9), (4, 4, 8), (4, 4, 4)). (37)

All solutions involve large transfers of goods. In this scenario, the cost of failing to meet
consumption dominates the cost of overstocking the warehouses. However, even here no
node stocks more than 9 units of goods at any stage.

4 Comparison of Systems under Uncertainty

and Correlation

4.1 Degradation of Optimality under Uncertainty

In this section, we propose that the consumption schedule, Ct
i , i ∈ N , t ∈ T , is uncertain.

Instead, we have an a priori estimate Ĉt
i of the true consumption Ct

i . In the last section,
this estimate coincided with the realisation so that Ĉt

i = Ct
i . Here we use

Ĉt
i = max{0, Ct

i + εt
i} (38)

where εt
i is an error term.

In this study, we generate the error term εt
i according to a Bernoulli sequence as follows.

First, εt
i is initialised to 0. Define the random variable Z with two outcomes, either

success with fixed probability p or failure with probability 1−p. Then, a perturbation is
repeatedly introduced to εt

i by repeatedly adding a uniformly distributed random integer
over -3 to 3 so long as the random variable Z = success. Refer to Appendix C for an
illustrative depiction of the relationship between the value of the error term εt

i ≡ ε and
the probability that it is observed for values of p between 0.1 and 0.6.

Under uncertainty, the T stage DP model is solved in multiple instances. Initially, one
complete T stage optimal policy is computed using the inexact approximations Ĉt

i to Ct
i .

The true values of C1
i are then revealed. With this information, an optimal policy for the

remaining T − 1 stages is re-computed using an appropriately adjusted Dynamic Program
and the true values of C2

i are revealed. This step process of solution and re-computation
is repeated until all values C1

i , . . . , CT
i are known.

Six logistics chains are compared in Figure 12 each of length 4 with consumption Ct
i

generated on the integers between 0 and 3. In each case, the three numbers after the initial
designator DP and SR describe the holdings polices of nodes 1 through 3 respectively. Each
chain is independently simulated 100 times for 15 time steps. The cost or penalty of each
system is measured according to equation (5) with A = B = 1 and α = β = 2. Figure 12
illustrates the outcome of this comparison for values of p between 0 and 0.6 in increments
of 0.1. The error bars describe 99% confidence intervals.

There are infinitely many possible logistics networks and ways to introduce error and
uncertainty into those systems. Hence, Figure 12 does not itself tell us much about the
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interplay between the two approaches across all possible logistics networks. However,
certain enduring features do arise. The DP model is optimal only when p ≡ 0. The
utility of this approach decreases as uncertainty increases. In comparison, the SR system
of Section 2.2 has no concept of estimating future consumption and is in that sense robust
to uncertainty. For all logistics systems studied, one is presented with the problem of
determining which of the two approaches is most appropriate given the level of uncertainty
in future consumption. In general, we observe that the SR system performs best when the
holdings policies are set relatively large. In fact, when running DP with policies (7, 5, 3),
there is little visible difference in curves between simulations with policies (6, 4, 3) while
the performance of the SR (7, 5, 3) system is substantially improved. On the other hand,
DP handles situations in which the holdings policies are relatively low substantially better
than SR dynamics. While both approaches benefit from increased holdings policies, the
marginal utility gained by increasing holdings policies is different. In both approaches,
where the relative benefit of increasing holdings policies are negligible, the system has
reached a “saturation” point in which desired consumption is always or almost always
satisfied and any penalty incurred is due to a failure to resupply the system to the desired
holdings levels.

4.2 Degradation of Optimality under Correlation

In this section, the uncertain consumption schedule Ct
i , i ∈ N , t ∈ T is further relaxed

to disregard the assumption of independence of consumption at different nodes. This is
motivated by the observation that in complex systems, correlations between nodes in a
network can result in unexpected behaviour. One source of correlation may be that the
consumption at each node in the supply chain occurs on the same battlefield. Then during
a major attack, high consumption at one node could be experienced at the same time as
high consumption at other nodes. There exists both historical and simulation evidence
that power laws exist in casualty statistics of warfare (Richardson, 1941, 1960; Roberts
and Turcotte, 1998; Lauren, 2001), which could indicate correlation in the activities of
combat units. Since these units are responsible for setting the consumption schedule it
is important to investigate the effect of correlations on the performance of the logistics
supply chain.

We compare the performance of the DP and SR algorithms under independent and cor-
related consumption generated by Uniform, Normal and Exponential distributions. The
independent consumption schedules with uncertainty are calculated as per Section 4.1,
where each node draws a random number from a distribution and adds error εt

i. The
three cases investigated are Xi ∼ {U [0, 5], N(2.5, 2), E(2.5)}, which have equal means.
The correlated consumption is generated by a single distribution for the entire chain, that
when divided amongst the L nodes is indistinguishable from the independent consumption
schedules, with the exception that correlation between any two nodes is almost one1. For
L = 3 this gives the distributions X ∼ {U [0, 15], N(7.5,

√
12), E(7.5)}. Total consumption

when xt is drawn from X is xt + εt, and consumption at node i equals

1The correlation is not exactly 1 because L may not divide x
t
∈ X exactly.

23



DSTO–TR–1807

Ct
i =

{

bxt+εt

L c, i /∈ R,

dxt+εt

L e, i ∈ R,
(39)

where R is the set of randomly chosen nodes that are allocated an extra unit of consump-
tion from the remainder of the Integer division.

For both DP and SR, for each distribution the (7, 5, 3) holding policy performs better than
(6, 4, 3) and (4, 4, 4) for all values of εt. Therefore, we limit the following comparisons to
the (7, 5, 3) holding policy. Figure 13 shows the average penalty for the SR algorithm with
independent and correlated consumption distributions over 1000 replications, where each
supply chain is simulated for 1000 time steps. For every distribution, the penalty increases
nonlinearly with error, such that the rate of increase in penalty grows with the size of ε. All
independent and identically distributed (denoted IID in Figure 13) consumption schedules
perform significantly better than correlated consumption schedules. On average, the SR
algorithm has a penalty of 131 for independent consumption, which more than doubles
to 288 with correlated consumption. This is despite the fact that total consumption of
the independent and correlated supply chains have identical distributions - it is only the
way consumption is distributed to individual nodes that varies. The complete correlation
modelled here represents an extreme example of correlation, and serves to quantify an
upper bound on the effect of correlations between nodes in a logistics supply chain.

Figure 13 also contains insights into the effect of different types of distributions on supply
chain performance. For a given level of ε, for both correlated and independent cases the
following ordering holds within the 99% confidence intervals: the Uniform penalty is less
than or equal to Normal penalty, which is strictly less than the Exponential penalty. This
is intuitive, since a major contributor to the penalty is when the consumption level exceeds
the holding level at a node. The Uniform distribution is bounded, which bounds the size
of consumption at any time step. The Normal distribution has a thin tail compared to the
Exponential distribution, meaning very large consumption is much more likely with an
Exponential distribution. Interestingly, for independent nodes, the performance is signifi-
cantly better with the Uniform distribution, while the penalty is similar between the Expo-
nential and Normal distributions. However, when the node consumption is correlated, the
penalty is not significantly different between the Uniform and Normal distributions, which
are both considerably better than the Exponential distribution. Therefore, the penalty
with the Normal distribution is bounded by the Uniform and Exponential distributions,
and varies within this range as a function of the degree of correlation.

The performance of the DP and SR with Normal and Exponential correlated consumption
schedules is compared in Figure 14. The results for the Uniform correlated distribution is
not shown because there is no significant difference to the Normal correlated consumption
performance for either algorithm. In all cases, DP performs significantly better than SR.
The performance of both algorithms is significantly worse when the total consumption
across the supply chain is generated from the Exponential distribution, even though the
mean consumption is the same as the Normal and Uniform consumption schedules.

The error bars for the SR data in Figure 14 are much smaller and the curves are smoother
because the results are averaged over 1000 time steps compared to only 15 time steps
for DP. When the SR data is run for only 15 time steps the penalty function is slightly
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underestimated (although the 1000 step results are still well within the confidence intervals
for the 15 step data), since the initial conditions h0

i = H0
i ∀i produces upward bias in

the steady state estimate of the expected penalty. DP is only run for 15 time steps
because its computational complexity prevented solving a 1000 step problem within a
reasonable amount of time with the available computing resources. One way to improve
the performance of DP is to consider a finite time horizon of say 15 time steps, and compute
a solution to the 1000 step problem by successively solving the problem for segments of 15
steps. Another option is to consider solving the DP model for disjoint subsets of nodes,
where each subset must set its ordering policy independently of nodes from other subsets.
Both approaches have reduced time complexity and can be considered approximations to
the full DP solution. Neither of these methods are implemented in this study, since the
15 time step data provides statistically significant results for comparisons with the SR
algorithm.

5 Discussion

Time-invariance is assumed in Section 2.3 for tractability and ease of analysis. This
assumption is reasonable in a subset of all possible systems in the real world, those being
systems whose underlying distributions for consumption do not change in time. Cyclic
phenomenon or other more complex system dynamics are not captured. For example,
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consumption in a logistics system varies in time but the way in which it varies may
fundamentally change between day and night. A day and night scenario can be broken
into two independent time-invariant systems, one for daytime and one for nighttime. At
the other extreme, a system whose distributions vary each and every new time step may to
all practical purposes be sufficiently random to be adequately modelled as a time-invariant
system, although this is by no means guaranteed. Between simple cyclic behaviour and
total unpredictability lies system dynamics which are partially predictable and therein
display trend–like behaviour yet are sufficiently complex to defy routine analysis. In such
systems, adaptive learning, or a similar technique, is required to teach the system how to
detect, anticipate and react to changes within the system.

The formulation for the logistics network of Section 2.1 includes a maximum link capacity
∆t

i,j between nodes i and j, and a maximum warehouse capacity W t
k, for nodes k and

time t. These capacity constraints are used in this report indirectly and are somewhat
peripheral to our results. Future applications of this research include a direct study of
the effects of link and warehouse capacities by including additional cost terms to the
penalty function (5). This future work complements our study with a focus on logistical
network design rather than policy setting and optimal routing in existing systems. Further
extensions include varying the stock multiplier Q, which describes the container or parcel
size. The benefits and costs between various methods of resupply, which deliver stock in
different base quantities, can then be gauged against the number of packages required and
the frequency of delivery required.

This study identified interesting nonlinear dynamics that could be explored in further
detail. In particular, the phase transitions observed in the Lagrangian relaxation were
peripheral to the scope of this report but suggest the potential for further research into
the general existence and cause of phase transitions in simple linear supply chains. Due to
time limitations, only a 20 node supply chain was tested for correlation and downstream
effects, but larger empirical studies using the methods developed in Section 2.4 may lead
to more conclusive results. The SR model may show improved performance if adapta-
tion is incorporated using a machine learning technique such as Reinforcement Learning.
An adaptive model would also be a more accurate representation of the SR logistics con-
cept. An obvious extension is to consider logistics networks rather than only linear supply
chains. It is not obvious whether a network is more or less vulnerable to uncertainty and
correlation, or what network topology provides the best performance in different contexts.
This study would provide a useful baseline for any research into more general network
models of SR logistics.

A limitation to the use of DP is the underlying assumption of perfect foresight. Put simply,
the future consumption is known or estimated a priori. This assumption is reasonable for
capturing predictable behaviour. For example, over the duration of a day, a force in
combat may expend a well known quantity of munitions. It may be reasonable in such
a situation to assert that the expenditure of munitions today will be similar to that of
yesterday or perhaps a weighted average of the expenditure over the last week. This is
called näıve and adaptive expectations respectively (Lucas, 1986). Perfect foresight is also
reasonable in situations of routine delivery, such as supplying provisions for infantry, and
any kind of planned activity, such as a planned offensive attack, where one can estimate
the requirement for medical supplies with reasonable certainty. In any case, in conducting
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a planned offensive attack, ordinance, medical supplies, provisions and other goods are
ordered and stored in advance and not upon action due to the non-zero delay in logistical
support. Finally, DP is reasonable to use when rationing goods. In this situation, the
true real demand for goods exceeds the actual preferred consumption level set in the DP
model. Consumption across the network is deliberately capped.

A three faceted approach to the study of logistics supply chains is recommended for a
balanced program of work across a broader context. This report delivers one of these
approaches by exploring the use of the techniques from statistics, control theory and
optimisation. The remaining two recommended studies employ classical network theory
and queuing theory respectively. In the first instance, transportation problems, multi–
commodity flow problems and scheduling problems have the potential to generate valuable
insights when appropriately modelled in a logistics context. In the second instance, metrics
such as average occupancies, mean waiting times and stationary distributions are useful in
measuring performance in logistics systems. The union of these three studies then comprise
a well-rounded and balanced research program designed to deliver coherent, relevant and
useful recommendations to the logistics community.

6 Conclusions

This study has presented a foundation for the analysis of logistics supply chains without
back–orders. Two models were developed. First, a purely reactive demand-oriented model
was formulated without any prediction or estimation of future demand. This model was
used to determine policies for holdings levels throughout the chain which minimise the
probability of stock–outs and shortfalls in supply. Second, a deliberately planned supply-
oriented model was formulated. This model was used to determine the optimal supply
regime which minimises the cost associated with over and under supply. Finally, a com-
parison between the two methods was conducted where demand is uncertain and cannot
be accurately predicted.

It is concluded that both the demand oriented and supply oriented models are useful
in context of the predictability and uncertainty of future demand in the system. While
the demand oriented model exhibits far from optimal performance, its utility or benefit
does not depend on being able to predict future demand. Conversely, the optimal supply
regime in the supply oriented model explicitly requires an accurate forecast of future de-
mand throughout the system. The utility or benefit obtained in using demand-oriented
mechanics substantially decreases when the holdings policies in the system limit through-
put. However, while supply oriented techniques are superior in efficiency and effectiveness
in these cases, there is a point at which uncertainty in the system becomes excessive. For
any real logistics system, identifying the boundary between the techniques in terms of
uncertainty and sufficient throughput is necessary to determine which of the two options
is most appropriate and relevant.

Correlations between demand at different nodes in a supply chain can significantly reduce
the performance of the system, which highlights the need to incorporate a level of buffering
in warehousing policies to counter this effect when correlations are possible. The statistical
nature of demand is also an important factor in the performance of the system, and
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additional buffering is recommended for logistics supply chains when statistical inference
from historical data indicates demand is fat-tailed.

The results of this study do not directly contradict the ideas presented in the Australian
Defence Force’s Future Joint Logistics Concept (Commonwealth of Australia, 2002) but
instead serve as a warning that responsive systems, simple or complex, will not and can-
not entirely replace traditional planned systems and that the problems associated with the
design, implementation and analysis of adaptive precision systems are non-trivial. This
study tentatively supports the conclusion that enhanced capabilities, emerging technolo-
gies and network-enabled warfare will ultimately facilitate better management and control
of logistics systems. However, it does so on the basis that these new developments will
reduce uncertainty across the system and therein have an indirect effect on the system
rather than directly supporting better logistics supply. Further work at the Defence Sci-
ence and Technology Organisation is currently underway to explore these issues in greater
detail
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Appendix A Geometry of the State Space

The success of any global optimisation heuristic depends on the geometry of the fitness
landscape and the underlying state space. Wolpert and Macready (1997) have shown that
over all fitness landscapes, no heuristic is better than any other. Therefore, if the SA
algorithm we developed in Section 2.3 is to be effective, it must exploit some systemic
feature of the state space. Most optimisation techniques are sensitive to the number of
local minima on the fitness landscape. For very rugged landscapes, the SA algorithm would
require a very slow cooling of the temperature parameter to avoid becoming trapped in
one of many suboptimal local minima that may exist at a large distance (measured by
the minimum number of operations of the SA neighbourhood function) from the global
minimum. In this section, we develop a distance measure and use Principal Components
Analysis to better understand the geometry of the state space.

Consider a linear supply chain of length five (including the source node 0) where each
node has consumption generated according to a Normal distribution N(5, 3). Using brute
force enumeration, we explore a region of integer valued solutions to the holding policy
for each node. That is, for every possible combination of node holding policies within the
region, the chain is simulated for 1000 time steps. The region is defined by setting

H low
i =

∑

j≥i

µj , (A1)

and

Hhigh
i = 5 +

∑

j≥i

µj , (A2)

where µj is the mean of the distribution at node j. Thus the (H low
i , Hhigh

i ) tuples for
nodes 1 ≤ i ≤ 4 are (20, 25), (15, 20), (10, 15), (5, 10). The minimisation problem defined
in (12) with the second objective function

∑

P(Ct
i − ct

i ≤ y) is used, with y = −1 and
Hmax = 60. Here, 60 is chosen to provide the maximum number of 146 valid combinations
where

∑

Hi = Hmax within the region defined by (A1) and (A2), although the following
results are found to hold for other values of Hmax. The interpretation of setting y = −1
is that desired consumption exceeds actual consumption, which means the supply chain
is unable to meet demand. Henceforth, we refer to the objective using the abbreviated
notation

∑

P.

The obtained optimal solution for a simulation of 1000 time steps is H∗ = (21, 17, 12, 10)
which has

∑

P = 0.173. This is a boundary solution, since node four is at its maximum
value. The objective function L (ψ) is graphed for each of the 146 combinations where
∑

Hi = Hmax in Figure A.1. As can be seen from Figure A.1, the optimal solution is the
27th combination. The combinations are ordered by enumerating between H low

i and the

Hhigh
i for each i, incremented in reverse node order and satisfying Hmax = 60. The first

combination in Figure A.1 is (20,15,15,10) and the last is (25,20,10,5).

Although Figure A.1 has many local minima, this is mainly an artifact of ordering four
dimensional data on one dimension of the graph. To understand the space better we
measure the distance in state space between the best configurations, where the state is
completely defined by the L-tuple H. The distance in state space is defined as the minimum
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number of units of stock that must be switched from one warehouse to another in order
to move between two stocking policies. Formally, for L : N

L × N
L → R,

L(G, H) =
1

2

∑

i

|Gi − Hi| (A3)

where Gi, Hi represent the holding policy at node i under policies G and H respectively.
Table A.1 lists the 10 best configurations, each with value less than 0.03 worse than the
optimal solution, along with the five worst holding policies. The 10 best holding policies
equate to points on the eight local minima that are below the 0.2 value in Figure A.1.
Four of the top ten solutions are within distance one of the optimal policy H∗, which has
nine holding policies within distance one in total. Further, the remaining six solutions in
the top ten are all only two units from H∗. A result that is not shown in Table A.1 is that
the first policy to have a distance of three or greater from H∗ is the 18th best solution
overall.

If we consider the five worst policies in Table A.1, we observe that two are seven units
distance away from the optimal policy. Seven is the maximum distance from the optimal
policy, and these are the only two policies that exist with L(H, H∗) = 7.

Table A.1: Ten best and five worst holding policies H ranked according to
∑

P compared
to their distance to the optimal solution H∗

H L(H, H∗)
∑

P

(21, 17, 12, 10) 0 0.173
(22,16,12, 10) 1 0.186
(21, 18, 13, 8) 2 0.186
(21, 17, 13, 9) 1 0.187
(20, 18, 12, 10) 1 0.19
(22, 17, 13, 8) 2 0.191
(20, 17, 14, 9) 2 0.193
(21, 19, 11, 9) 2 0.193
(22, 18, 12, 8) 2 0.196
(22, 17, 12, 9) 1 0.199
(22, 16, 13, 9) 2 0.203

(25, 19, 11, 5) 6 0.455
(25, 15, 15, 5) 7 0.457
(24, 20, 11, 5) 6 0.459
(24, 18, 13, 5) 5 0.463
(25, 20, 10, 5) 7 0.542

If the value of node 1 is held constant, the remaining three dimensions for nodes 2 through
4 can be visualised. Figure A.2 shows the

∑

P as the area of the bubbles for each holding
policy when node 1 equals 22. We can see that the landscape is quite smooth, since the
bubbles vary in size following a regular pattern.
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Figure A.1:
∑

P for each brute force enumeration for a five node supply chain
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Figure A.2: Bubble scatter plot of
∑

P for a five node supply chain when node 1 = 22
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In order to visualise the landscape for more than three nodes it is necessary to perform a
dimensionality reduction. Principal Components Analysis (PCA) (Jolliffe, 1986) is a factor
analysis method that is used to perform a variance maximising rotation of the original
state space. By selecting the p dimensions under the rotation with the largest variance,
the data is projected onto p orthogonal factors with the minimum error to the original
data under the `2-norm. The prinicpal components are given by the first p eigenvectors
of the correlation matrix, ordered by the magnitude of the associated eigenvalues.

The state space includes the L node holding policies in the natural numbers, not including
the source node 0, plus an additional non-negative real dimension for

∑

P. First, we
consider the brute force results for the region defined by (A1) and (A2) regardless of
whether Hmax = 60 is satisfied. This consists of five columns of data xi, 1 ≤ i ≤ 5, one
for each dimension of the state space, and 1296 rows, one for each brute force combination
of node holding policies. The correlation between two columns of data is given by

cor(xi, xj) ≡
cov(xi, xj)

σiσj
, (A4)

where σi is the standard deviation of xi. The covariance is given by

cov(xi, xj) ≡ E((xi − µi)(xj − µj)), (A5)

where E is the mathematical expectation and µi is E(xi). The correlation matrix between
each column is shown in Table A.2. Because the state space is completely enumerated
over the 1296 observations, there exists no correlation between the nodes. We observe on
average, as each node increases its holding policy, that

∑

P decreases, and the magnitude
of the correlation increases for nodes further down the supply chain. Therefore, if all nodes
have the minimum stock levels H = (20, 15, 10, 5) we would expect the marginal utility of
adding extra holding to be greatest at node 4 and smallest at node 1.

Table A.2: Correlation matrix between nodes and
∑

P from brute force enumeration of a
five node supply chain

Node 1 Node 2 Node 3 Node 4
∑

P

Node 1 1
Node 2 0 1
Node 3 0 0 1
Node 4 0 0 0 1
∑

P -0.2055 -0.3104 -0.4193 -0.7688 1

The eigenvectors and eigenvalues are shown in Table A.3. The percentage of variation in
the direction of each eigenvector is calculated from the relative size of the corresponding
eigenvalue. The first eigenvector, which is a combination of all four node holding policies
plus 50% of the

∑

P dimension, captures 39% of all variation. The next three dimensions
are independent of

∑

P and account for a further 60% of the variation. The final eigen-
vector is a reflection on a hyperplane of the first eigenvector, which can be thought of as
the error of the first eigenvector in accounting for the variation in

∑

P as a function of
the node holding policies. The final eigenvector only contributes 1% to the total varia-
tion. Therefore, the underlying data is essentially four dimensional, but the redundant
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Table A.3: Percentage of variation for principal components from brute force enumeration
of a five node supply chain

Eigenvectors Eigenvalues Percentage of Variation

(-0.1527, -0.2307, -0.3116, -0.5713, 0.7071) 1.9516 39.0%
(0.9762, -0.0559, -0.0922, -0.188, 0) 1 20.0%
(0.0173, -0.9422, 0.109, 0.3163, 0) 1 20.0%

(-0.0079, -0.0521, 0.8862, -0.4602, 0) 1 20.0%
(0.1527, 0.2307, 0.3116, 0.5713, 0.7071) 0.0484 1.0%

dimension is a combination of all five of our original dimensions, so none of the original
dimensions can be completely eliminated.

The first three principal components graphed in Figure A.3 account for 80% of the total
variation. This space is well behaved in the sense that changes in the second and third
principal components, which are independent of

∑

P, result in smooth changes to the
first principal component that captures the majority of the variation in

∑

P. The other
relevant feature of Figure A.3 is the way in which the data is clustered into six layers
according to their second and third principal components.
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Figure A.3: First three principal components from brute force enumeration of a five node
supply chain

We now consider the effect of the additional constraint
∑

Hi = 60 on the principal com-
ponents. Because P(Ct

i − ct
i ≤ y) is a monotonic decreasing function of Hi ∀i, we consider

only the Pareto dominant subset of
∑

Hi ≤ Hmax given by
∑

Hi = Hmax, which contains
146 different holding policy combinations. This introduces a relation between the values
of the nodes which lie on the Simplex defined by

∑

Hi = 60. Specifically, if we know Hi

for all nodes except one node j we can deduce that Hj = 60 − ∑

k 6=j Hk. The correlation
matrix for the brute force enumeration given

∑

Hi = 60 is given in Table A.4. Compared
to the correlation matrix in Table A.2, it can be observed that Table A.4 contains corre-
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lations between nodes due to the additional constraint. The only node to have a negative
correlation with

∑

P is node 4. The reason the other nodes are positive is because any
increase in say node 1 will result in a reduction in the holding policy for some node further
down the chain and so

∑

P can increase even when P(Ct
i − ct

i ≤ y) decreases. The first
three nodes have decreasing positive correlations with

∑

P as the node number increases,
so the sign but not the ordering of the marginal utility has changed compared to Table
A.2.

Table A.4: Correlation matrix when
∑

Hi = 60

Node 1 Node 2 Node 3 Node 4
∑

P

Node 1 1
Node 2 -0.3333 1
Node 3 -0.3333 -0.3333 1
Node 4 -0.3333 -0.3333 -0.3333 1
∑

P 0.502 0.2459 0.0144 -0.7623 1

The largest eigenvalue in Table A.5 shows that 42.5% of all variation can be captured
by a combination of three nodes plus the

∑

P. Although all four nodes have non-zero
values, node three’s value of 0.0117 is not significant. With three dimensions, 95.9% of
the variation is be represented, while four dimensions accounts for all of the data. This
means the fifth dimension, which is an equal combination of all four node holding policies
is redundant.

Table A.5: Percentage of variation for principal components between nodes and
∑

P from
brute force enumeration of a five node supply chain given

∑

Hi = 60

Eigenvectors Eigenvalues Percentage of Variation

(0.4068, 0.1992, 0.0117, -0.6177, 0.6428) 2.1266 42.5%
(0.1012, 0.5099, -0.8266, 0.2155, 0) 1.3333 26.7%
(0.6766, -0.6499, -0.2578, 0.2311, 0) 1.3333 26.7%

(-0.3413, -0.1672, -0.0098, 0.5183, 0.766) 0.2067 4.1%
(0.5, 0.5, 0.5, 0.5, 0) 0.0000 0.0%

The first three principal components for the brute force enumeration given
∑

Hi = 60
are graphed in Figure A.4. The Simplex relation between the nodes has reduced the six
distinct layers of clustered points to a single plane. The first principal component now
captures all variation due to

∑

P, and changes to the second or third principal component
produces smooth changes to the first factor. Further, the minimum value along the first
principal component occurs at a corner of the plane, and other low values are nearby in
this space, while large values in the first factor are distant. This is the most accurate
visualisation of the state space that is possible in three dimensions, and confirms the
intuition we developed earlier when analysing the distances in Table A.1. Therefore, we
conclude that for this particular system under the distance measure (A3) the geometry is
suitably well behaved to expect good performance using SA with a relatively rapid cooling
schedule.
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Figure A.4: First three principal components from brute force enumeration of a five node
supply chain given

∑

Hi = 60.
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Appendix B Simulated Annealing

SA is a heuristic technique loosely based on the physics of thermal equilibria and the prop-
erties of materials like metal and glass. In such materials, adding heat disrupts the state of
the material and through cooling the material is annealed to alter its properties. Typical
examples of this process include glass blowing and the tempering of steel. The SA algo-
rithm is conceptually modelled on this process and is applied as an heuristic optimisation
technique for problems which are otherwise intractable or difficult to solve. The algorithm
is traditionally posed to minimise energy levels in a system and therein stabilise it. The
algorithm successively introduces one or more perturbations, disturbances or transitions
into the system in an attempt to restabilise it in more desirable states. If the perturbation
produces a favourable result, then the new system state is accepted. Otherwise, the new
state is accepted on the basis of some pre-determined stochastic acceptance function which
classically resembles the Boltzmann distribution.

Denote the space of all possible states S over which the SA algorithm searches. The algo-
rithm is initialised by identifying the initial state s0 ∈ S of the system being annealed and
the cooling schedule of temperatures (Tj), whose elements Tj ∈ T ⊂ R

+ are monotonically
decreasing, where i = j . . . J corresponds to an iteration counter of the algorithm for some
fixed number of annealing steps J . The probability of accepting a transition depends on
the objective function, often referred to as the energy function ET : S2 → R, and is defined
as

P(accept new state ŝ| current state s) = min
{

1, e
−(ET (ŝ)−ET (s))

kT

}

, (B1)

for some scaling constant k, where T ∈ T is the constant denoting the current temperature
level of the algorithm. The probability of accepting transitions leading to less desirable
states potentially allows the algorithm to escape local minima.

The algorithm iteratively conducts a biased random walk over the state space S at each
temperature Tj ∈ T , initially starting in s0 ∈ S, as follows. Set the current state of the
system s = s0. For each temperature Tj in order: generate a new state ŝ; accept or reject
the state ŝ as the current state s according to (B1); do this for K time steps. This loop
of K steps is referred to as a Metropolis loop after Metropolis et al. (1953). The number
of steps in the Metropolis loop and the cooling schedule are tuning parameters that are
set based on constraints on available processor time and an evaluation of how well the
problem is solved (usually this means satisfying some criteria of utility combined with
evidence that the SA is able to converge when the best solution does not change over a
large number of steps). We expect SA will find a near optimal solution even with a rapid
cooling schedule due to the nature of the solution space (see Appendix A).
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Appendix C Error Component

To illustrate the value of the error component ε in Section 4.1, we generated 50,000 inde-
pendent error terms and counted the frequency of each outcome, see Figure C.1. In this
figure, values outside of [−6, 6] are not displayed as their frequency is too low.
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Figure C.1: Frequency of outcome against observed error in 50,000 independent trials
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